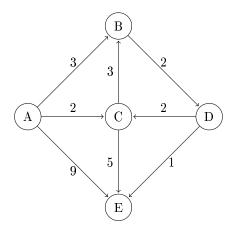
Recherche Operationnelle

Vincent Gripon

19 avril 2011

Dans ce TD, nous allons voir comment construire la table de routage associée à la recherche de plus courts chemins dans l'algorithme de Roy-Warshall.

Question 1)


On propose de changer l'algorithme de Roy-Warshall de la façon suivante :

```
sp = matrice(n,n)
routage = matrice(n,n)

pour i de 1 à n
    pour j de 1 à n
    sp(i,j)<-delta(i,j)

pour k de 1 à n
    pour i de 1 à n
    pour j de 1 à n
    si sp(i,k)+sp(k,j) < sp(i,j)
    alors
        sp(i,j) <- sp(i,k)+sp(k,j)
    routage(i,j) <- k</pre>
```

Trouver les matrices sp et routage associées au graphe suivant :

Question 2)

Pour retrouver le chemin le plus court menant d'un noeud à un autre, on utilise le principe suivant :

- Si routage(i, j) n'a pas été modifié alors le plus court chemin menant de i à j est l'arrête les reliant,
- Sinon k = routage(i, j) désigne un noeud par lequel un des plus court chemin passe, il reste donc à trouver un plus court chemin de i à k et de k à j.

Proposer un algorithme récursif qui permette de trouver le plus court chemin entre deux noeuds du graphe en utilisant la matrice routage. L'appliquer pour trouver le plus court chemin reliant A à E.

Question 3)

Quelle est la complexité de votre algorithme? Est-ce génant vis à vis de Roy-Warshall?

Question 4)

Quelle est la complexité du calcul des chemins entre tous noeuds du graphe?

Question 5)

On se propose maintenant de construire un tableau de routage pour l'algorithme de Dijkstra. Proposer une modification de l'algorithme qui permette de remplir ce tableau.

Question Bonus

Pour l'algorithme de Dijkstra, on peut légèrement améliorer la fonction récursive qui permet de reconstituer un chemin le plus court. Expliquer en quoi elle est différente de celle pour Roy-Warshall.